Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Escalation of polymerization in a thermal gradient.

Identifieur interne : 001F99 ( Main/Exploration ); précédent : 001F98; suivant : 002000

Escalation of polymerization in a thermal gradient.

Auteurs : Christof B. Mast [Allemagne] ; Severin Schink ; Ulrich Gerland ; Dieter Braun

Source :

RBID : pubmed:23630280

Descripteurs français

English descriptors

Abstract

For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.

DOI: 10.1073/pnas.1303222110
PubMed: 23630280


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Escalation of polymerization in a thermal gradient.</title>
<author>
<name sortKey="Mast, Christof B" sort="Mast, Christof B" uniqKey="Mast C" first="Christof B" last="Mast">Christof B. Mast</name>
<affiliation wicri:level="4">
<nlm:affiliation>Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schink, Severin" sort="Schink, Severin" uniqKey="Schink S" first="Severin" last="Schink">Severin Schink</name>
</author>
<author>
<name sortKey="Gerland, Ulrich" sort="Gerland, Ulrich" uniqKey="Gerland U" first="Ulrich" last="Gerland">Ulrich Gerland</name>
</author>
<author>
<name sortKey="Braun, Dieter" sort="Braun, Dieter" uniqKey="Braun D" first="Dieter" last="Braun">Dieter Braun</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23630280</idno>
<idno type="pmid">23630280</idno>
<idno type="doi">10.1073/pnas.1303222110</idno>
<idno type="wicri:Area/PubMed/Corpus">001C98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C98</idno>
<idno type="wicri:Area/PubMed/Curation">001C98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001C98</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001B52</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001B52</idno>
<idno type="wicri:Area/Ncbi/Merge">000A43</idno>
<idno type="wicri:Area/Ncbi/Curation">000A43</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000A43</idno>
<idno type="wicri:Area/Main/Merge">002020</idno>
<idno type="wicri:Area/Main/Curation">001F99</idno>
<idno type="wicri:Area/Main/Exploration">001F99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Escalation of polymerization in a thermal gradient.</title>
<author>
<name sortKey="Mast, Christof B" sort="Mast, Christof B" uniqKey="Mast C" first="Christof B" last="Mast">Christof B. Mast</name>
<affiliation wicri:level="4">
<nlm:affiliation>Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schink, Severin" sort="Schink, Severin" uniqKey="Schink S" first="Severin" last="Schink">Severin Schink</name>
</author>
<author>
<name sortKey="Gerland, Ulrich" sort="Gerland, Ulrich" uniqKey="Gerland U" first="Ulrich" last="Gerland">Ulrich Gerland</name>
</author>
<author>
<name sortKey="Braun, Dieter" sort="Braun, Dieter" uniqKey="Braun D" first="Dieter" last="Braun">Dieter Braun</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biopolymers (chemistry)</term>
<term>Calibration</term>
<term>Catalysis</term>
<term>DNA (chemistry)</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Geology (methods)</term>
<term>Kinetics</term>
<term>Models, Statistical</term>
<term>Nucleotides (chemistry)</term>
<term>Polymerization</term>
<term>RNA (chemistry)</term>
<term>RNA, Catalytic (chemistry)</term>
<term>Temperature</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>ARN ()</term>
<term>ARN catalytique ()</term>
<term>Biopolymères ()</term>
<term>Calibrage</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>Eau ()</term>
<term>Géologie ()</term>
<term>Modèles statistiques</term>
<term>Nucléotides ()</term>
<term>Polymérisation</term>
<term>Température</term>
<term>Transfert d'énergie par résonance de fluorescence</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Biopolymers</term>
<term>DNA</term>
<term>Nucleotides</term>
<term>RNA</term>
<term>RNA, Catalytic</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Geology</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Calibration</term>
<term>Catalysis</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Kinetics</term>
<term>Models, Statistical</term>
<term>Polymerization</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>ARN</term>
<term>ARN catalytique</term>
<term>Biopolymères</term>
<term>Calibrage</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>Eau</term>
<term>Géologie</term>
<term>Modèles statistiques</term>
<term>Nucléotides</term>
<term>Polymérisation</term>
<term>Température</term>
<term>Transfert d'énergie par résonance de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université Louis-et-Maximilien de Munich</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Braun, Dieter" sort="Braun, Dieter" uniqKey="Braun D" first="Dieter" last="Braun">Dieter Braun</name>
<name sortKey="Gerland, Ulrich" sort="Gerland, Ulrich" uniqKey="Gerland U" first="Ulrich" last="Gerland">Ulrich Gerland</name>
<name sortKey="Schink, Severin" sort="Schink, Severin" uniqKey="Schink S" first="Severin" last="Schink">Severin Schink</name>
</noCountry>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Mast, Christof B" sort="Mast, Christof B" uniqKey="Mast C" first="Christof B" last="Mast">Christof B. Mast</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23630280
   |texte=   Escalation of polymerization in a thermal gradient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23630280" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021